Representing “why’s”
a proof language for IsaPlanner

Gudmund Grov (Edinburgh) & Lucas Dixon (Google)

Sponsored by: EPSRC funded AI4FM project, Bundy’s platform grants & Google

Motivation

® Difficult to combine reasoning techniques (tactics)
® how to pass around and use goals & results!?
e LCF Tactics - list of goals (reached by number in list)
® hard to handle new goals (don’t know result goals of tactic)
® egapply a 1; apply b 2
e IsaPlanner-2 - all goals are named
® techniques often represented as functions on a goal
® keeps a list of open/current goals and results
® not clear which should be open (& no “types of goals™)
e Our goal: framework to represent “why’s”

® classification & handling of goals is the key

® build on (refactoring of) existing work i.e. IsaPlanner/Isabelle

Wednesday, 27 April 2011

|IsaPlanner-3

® Requirements

® clear & simple ~ uniform handling of goals
® easy to classify goals
® abstract/simple ~ machine learnable in longer term

e Approach: boxes and wires

® 23 box is a techniques
® 3 wire is a goal/result type

® some |/O wires may be “empty”
® abstracts over actual goals/results

® static checking of technique combinations

Wednesday, 27 April 2011

|IsaPlanner-3

(r1): ==eeee--
(r2): ====e=--
l-
rst: |proof plan : pplan » @l)i— by M1 to g2
(Q2): ~=weemee 222

restype: gname -> wire
context: ctx (g3): ===e==ee 227
continuation : rtechn option

g

{r11->W1,g2l->W2, g3 I-> W2}

Sy

name: string
input : wire set

output: wire set OR branches
appf: rst -> rst seq AL

rtechn:

=11 =- B

Wednesday, 27 April 2011

Wires

® A wire describes a “type of goal/result”
® 2 nice way of classifying them
® Currently represented as strings
® TJarget has to be “more general” than source
® partial order on wires as strings with . notation
® eg."AB" <"A”
® Separate BCK/FWD and AND/OR wires [more fater]

Wednesday, 27 April 2011

FWD/BCK wires

® Techniques on goals are backwards
® from goals to subgoals
® linear: goal consumed & new goals created

® input wire must be consumed

® Q:what happens with discharged goals?
® Forward application from result to result

® should be able to reason forwards from same result many times

® input wire not consumed

® We separate forwards and backwards wires

® ‘“goal.x” vs“result.x”

Wednesday, 27 April 2011

Combinators

(A then B)
———————— il ® Sequential composition
' | A | ® |/O type ensured by combinator
l l ® input(B) = output(A) [almost]
B ® input(A then B) = input(A)
i _________ l _______ l _________ ; ® output(A then B) = output(B)

® Composition/separation clear

Wednesday, 27 April 2011

Combinators
(A then B)

® Sequential composition

® |/O type ensured by combinator

® input(B) = output(A) [almost]

® input(A then B) = input(A)

® output(A then B) = output(B)

® Composition/separation clear

Wednesday, 27 April 2011

g HR
r/rjﬂ
L} _____ P

Combinators
(A compose B)

® (Generalises then

® Allows bypassing of wires

® composition/separation less
clear

® input(A’ compose B') =
- input (A’) + (input(B’) - output(A'))

® output (A’ compose B') =

output(B’) + (output(A’) - input(B’))

Wednesday, 27 April 2011

Combinators
(A tensor B)

Py

A B

b ==w———— 5

® Symmetric: A tensor B = B tensor A

® can be parallelized
® evaluation:

® “run as in parallel (on same input) - combine results”

Wednesday, 27 April 2011

Combinators
(A tensor B)

et 5
D

® |oint input (blue wire): only if fwd

® or no meta variables
® Backward input wires must be disjoint

® no such requirement of output (due to eval)

Wednesday, 27 April 2011

Example (BCK only)

induct then (simp tensor (ripple compose fertilize))

‘\’ goal.inductable

induct
goal.base |
goal goal.step
simp ripple
\v goal.fertilizable
fertilize
goal.cond

\/

Wednesday, 27 April 2011

Example (BCK only)

induct then (simp tensor (ripple compose fertilize))

‘\l goal.inductable

induct

goal.base |
goal goal.step

simp ripple

x goal.fertilizable

fertilize
ol

goal.cond

\/

Wednesday, 27 April 2011

Example (BCK only)

induct then ((2base then simp)
tensor (ripple compose fertilize))

‘\] goal.inductable

induct
goal.base /
goal.step
2base
goal.basel ripple
goal \v goal.fertilizable
SIp fertilize
\‘Coal.cond

\4

Wednesday, 27 April 2011

Example (BCK only)

induct then ((base_wrap simp)
tensor (ripple compose fertilize))

‘\] goal.inductable

induct
goal.baserJ
goal.step
base_wrap
goal * ripple
simp \v goal.fertilizable
A
fertilize
goal.cond

\/

Wednesday, 27 April 2011

AND/OR wires

appf (g1)

appf (92):

—
| -

OR choice: | __

AND choice:

— [[

T

—>- -
s

AND/OR wires

® No syntactic difference in in language between AND and OR
® |n most cases wires are AND choices:
® e.g.we simplify all base cases

® But, there are cases we want OR choices, e.g substitution:

result.eq ¢ ‘ goal
subst_goal
goal.subst l l goal.cond

® Problem: non-determinism - Example (with result.eq as AND)

e Input: ({a=b,c=a, q => a=e},{P(c)})
® Output: ({P(a)}.{}) or ({P(b)}.1}) or ({P(e)}iq}) ?

Wednesday, 27 April 2011

Future work

® Wires - parameterize over them
® more structure than names for better classification (reg-expr/|st order)
® Lkeep wire/type-checking decidable & static

® Application function (appf) - still a“black box” (cannot decompose)

® |oops: only low-level repetition

® datatype appf = Comp of (rtechn * rtechn)
| Tensor of (rtechn * rtechn)

® datatype appf = Nested of (rtechn HGraph)
| Atom of rst -> rst seq

® Wire classification/learning - sufficiently simple/abstract language to
® recognise patterns where techniques succeeds/fails
® automate classification & re-classify (specialise) goals/results

® discover new combinations of techniques (or new techniques?) for given
patterns

Wednesday, 27 April 2011

