
Representing “why’s”
a proof language for IsaPlanner

Gudmund Grov (Edinburgh) & Lucas Dixon (Google)

Sponsored by: EPSRC funded AI4FM project, Bundy’s platform grants & Google

Wednesday, 27 April 2011

Motivation
• Difficult to combine reasoning techniques (tactics)

• how to pass around and use goals & results?

• LCF Tactics - list of goals (reached by number in list)

• hard to handle new goals (don’t know result goals of tactic)

• e.g. apply a 1; apply b 2

• IsaPlanner-2 - all goals are named

• techniques often represented as functions on a goal

• keeps a list of open/current goals and results

• not clear which should be open (& no “types of goals”)

• Our goal: framework to represent “why’s”

• classification & handling of goals is the key

• build on (refactoring of) existing work i.e. IsaPlanner/Isabelle

Wednesday, 27 April 2011

IsaPlanner-3
• Requirements

• clear & simple ~ uniform handling of goals

• easy to classify goals

• abstract/simple ~ machine learnable in longer term

• Approach: boxes and wires

• a box is a techniques

• a wire is a goal/result type

• some I/O wires may be “empty”

• abstracts over actual goals/results

• static checking of technique combinations

Wednesday, 27 April 2011

IsaPlanner-3

Wednesday, 27 April 2011

Wires

• A wire describes a “type of goal/result”

• a nice way of classifying them

• Currently represented as strings

• Target has to be “more general” than source

• partial order on wires as strings with . notation

• e.g. “A.B” < “A”

• Separate BCK/FWD and AND/OR wires [more later]

Wednesday, 27 April 2011

FWD/BCK wires
• Techniques on goals are backwards

• from goals to subgoals

• linear: goal consumed & new goals created

• input wire must be consumed

• Q: what happens with discharged goals?

• Forward application from result to result

• should be able to reason forwards from same result many times

• input wire not consumed

• We separate forwards and backwards wires

• “goal.x” vs “result.x”

Wednesday, 27 April 2011

Combinators
(A then B)

• Sequential composition

• I/O type ensured by combinator

• input(B) = output(A) [almost]

• input(A then B) = input(A)

• output(A then B) = output(B)

• Composition/separation clear

Wednesday, 27 April 2011

Combinators
(A then B)

• Sequential composition

• I/O type ensured by combinator

• input(B) = output(A) [almost]

• input(A then B) = input(A)

• output(A then B) = output(B)

• Composition/separation clear

Wednesday, 27 April 2011

Combinators
(A compose B)

• Generalises then

• Allows bypassing of wires

• composition/separation less
clear

• input(A’ compose B’) =
input(A’) + (input(B’) - output(A’))

• output(A’ compose B’) =
output(B’) + (output(A’) - input(B’))

Wednesday, 27 April 2011

Combinators
(A tensor B)

• Symmetric: A tensor B = B tensor A

• can be parallelized

• evaluation:

• “run as in parallel (on same input) - combine results”

Wednesday, 27 April 2011

Combinators
(A tensor B)

• Joint input (blue wire): only if fwd

• or no meta variables

• Backward input wires must be disjoint

• no such requirement of output (due to eval)
Wednesday, 27 April 2011

Example (BCK only)
induct then (simp tensor (ripple compose fertilize))

Wednesday, 27 April 2011

Example (BCK only)
induct then (simp tensor (ripple compose fertilize))

Wednesday, 27 April 2011

Example (BCK only)
induct then ((2base then simp)

 tensor (ripple compose fertilize))

Wednesday, 27 April 2011

Example (BCK only)
induct then ((base_wrap simp)

 tensor (ripple compose fertilize))

Wednesday, 27 April 2011

AND/OR wires

Wednesday, 27 April 2011

AND/OR wires
• No syntactic difference in in language between AND and OR

• In most cases wires are AND choices:

• e.g. we simplify all base cases

• But, there are cases we want OR choices, e.g substitution:

• Problem: non-determinism - Example (with result.eq as AND)

• Input: ({a=b,c=a, q => a=e},{P(c)})

• Output: ({P(a)},{}) or ({P(b)},{}) or ({P(e)},{q}) ?

subst_goal

result.eq goal

goal.subst goal.cond

Wednesday, 27 April 2011

Future work
• Wires - parameterize over them

• more structure than names for better classification (reg-expr/1st order)

• keep wire/type-checking decidable & static

• Application function (appf) - still a “black box” (cannot decompose)

• loops: only low-level repetition

• datatype appf = Comp of (rtechn * rtechn)
 | Tensor of (rtechn * rtechn) ...

• datatype appf = Nested of (rtechn HGraph)
 | Atom of rst -> rst seq

• Wire classification/learning - sufficiently simple/abstract language to

• recognise patterns where techniques succeeds/fails

• automate classification & re-classify (specialise) goals/results

• discover new combinations of techniques (or new techniques?) for given
patterns

Wednesday, 27 April 2011

