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Motivation
• Difficult to combine reasoning techniques (tactics)

• how to pass around and use goals & results?

• LCF Tactics - list of goals (reached by number in list)

• hard to handle new goals (don’t know result goals of tactic)

• e.g. apply a 1; apply b 2

• IsaPlanner-2 - all goals are named

• techniques often represented as functions on a goal

• keeps a list of open/current goals and results

• not clear which should be open (& no “types of goals”)

• Our goal: framework to represent “why’s”

• classification & handling of goals is the key

• build on (refactoring of) existing work i.e. IsaPlanner/Isabelle
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IsaPlanner-3
• Requirements

• clear & simple ~ uniform handling of goals

• easy to classify goals

• abstract/simple ~ machine learnable in longer term

• Approach: boxes and wires

• a box is a techniques

• a wire is a goal/result type

• some I/O wires may be “empty”

• abstracts over actual goals/results

• static checking of technique combinations
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IsaPlanner-3
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Wires

• A wire describes a “type of goal/result”

• a nice way of classifying them

• Currently represented as strings

• Target has to be “more general” than source

• partial order on wires as strings with . notation

• e.g. “A.B” < “A” 

• Separate BCK/FWD and AND/OR wires [more later]
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FWD/BCK wires
• Techniques on goals are backwards

• from goals to subgoals

• linear: goal consumed & new goals created

• input wire must be consumed

• Q: what happens with discharged goals?

• Forward application from result to result

• should be able to reason forwards from same result many times

• input wire not consumed

• We separate forwards and backwards wires

• “goal.x” vs “result.x”
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Combinators 
(A then B)

• Sequential composition

• I/O type ensured by combinator

• input(B) = output(A) [almost]

• input(A then B) = input(A)

• output(A then B) = output(B)

• Composition/separation clear
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Combinators 
(A compose B)

• Generalises then

• Allows bypassing of wires

• composition/separation less 
clear

• input(A’ compose B’) =
input(A’) + (input(B’) - output(A’))

• output(A’ compose B’) = 
output(B’) + (output(A’) - input(B’)) 
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Combinators 
(A tensor B)

• Symmetric:  A tensor B = B tensor A

• can be parallelized

• evaluation:  

• “run as in parallel (on same input) - combine results”
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Combinators 
(A tensor B)

• Joint input (blue wire): only if fwd 

• or no meta variables

• Backward input wires must be disjoint

• no such requirement of output (due to eval)
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Example (BCK only)
induct then (simp tensor (ripple compose fertilize))
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Example (BCK only)
induct then (simp tensor (ripple compose fertilize))
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Example (BCK only)
induct then ((2base then simp)   

               tensor (ripple compose fertilize))
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Example (BCK only)
induct then ((base_wrap simp)   

               tensor (ripple compose fertilize))
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AND/OR wires

Wednesday, 27 April 2011



AND/OR wires
• No syntactic difference in in language between AND and OR

• In most cases wires are AND choices:

• e.g. we simplify all base cases

• But, there are cases we want OR choices, e.g substitution:

• Problem:  non-determinism - Example (with result.eq as AND)

• Input: ({a=b,c=a, q => a=e},{P(c)})

• Output: ({P(a)},{})  or ({P(b)},{}) or ({P(e)},{q}) ?

subst_goal

result.eq goal

goal.subst goal.cond
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Future work
• Wires - parameterize over them

• more structure than names for better classification (reg-expr/1st order)

• keep wire/type-checking decidable & static

• Application function (appf) - still a “black box” (cannot decompose)

• loops: only low-level repetition

• datatype appf = Comp of (rtechn * rtechn)
              | Tensor of (rtechn * rtechn) ...

• datatype appf = Nested of (rtechn HGraph) 
              | Atom of rst -> rst seq

• Wire classification/learning - sufficiently simple/abstract language to

• recognise patterns where techniques succeeds/fails

• automate classification & re-classify (specialise) goals/results

• discover new combinations of techniques (or new techniques?) for given 
patterns
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