Automated Reasoning and Formal Methods

Alan Bundy

School of Informatics,
University of Edinburgh

AI meets Formal Software Development
Automated Reasoning and Formal Methods

- Formal methods generate proof obligations (POs).
- Proving POs requires mathematical expertise.
 - Which is expensive and time-consuming.
- Can PO proofs be automated?
 - Initial attempts in 1970s were unpromising.
- What has changed in 40 years?
- Are we ready to ‘mainstream’ formal methods into normal software development processes?
 - Greater industrial demand, driven by increased complexity, concurrency, cost of failure, etc.
 - What about the late adopters?
Developments in Automated Reasoning

- Computers are much faster and have more memory.
- We have more decision procedures.
 - Whose worst-case complexity is rarely encountered.
- Automatic provers have improved.
 - Open conjectures have been solved.
- Interactive provers integrate these improvements.
 - Have better interfaces.
 - Have proved significant theorems.
- Machine learning is much improved.
Faster, Bigger Computers

- 42 years of Moore’s Law since 1970.
 - 2^{21} increase in transistor density.
- We can quickly search huge search spaces.
 - e.g., million queens problem.
- Has led to improved prover performance.
 - Bigger search spaces; faster search.
Decision Procedures

- SAT solving dates from 1962 with DPLL.
 - Essentially same algorithm still state-of-art.
- Model checking now becoming standard,
 - Especially for hardware.
- Satisfiability Modulo Theory (SMT) solvers extend SAT solvers,
 - with linear arithmetic, arrays, bit-vectors, etc.
 - Coverage includes many POs.
- No human intervention required.
 - Except in problem representation, parameter setting, etc.
- Theorem proving undecidable in general.
 - Although, SMT can also be adapted to undecidable theories.
- Knuth-Bendix completion can invent new decision procedures.
Automatic Provers

- First-order provers usually automatic.
- Significant improvements in speed and search capability.
 - Driven by theory advances, CASC and Moore’s Law.
 - Superposition, rewriting, built-in unification, clause indexing, faster algorithms.
- Development of libraries of definitions and lemmas.
- EQP proof that all Robbins algebras are boolean was milestone.
- No human intervention required.
 - Except in problem representation, parameter setting, etc.
- Can’t handle higher-order, e.g., induction rules.
Inductive Proof

- Needed for reasoning about repetition, invariants, etc.
- Failure of cut elimination.

\[
\Gamma, \text{Lemma} \vdash \phi \quad \Gamma \vdash \text{Lemma} \\
\quad \Gamma \vdash \phi
\]

- Need for intermediate lemmas, generalisations, non-standard inductions, etc.
- Cause of infinite branching rate.
- Practical problem for quite simple inductive theorems.
 - For instance, commutativity of +.
- Human intervention usually required.
- Some progress in automatic guessing of lemmas.
Interactive Provers

- Gradual improvement of user interfaces.
 - Finer levels of control.
- Integration of decision procedures, first-order provers, counter-example finders, etc.
- Used to verify large ICT systems.
 - e.g., microprocessors, compilers, etc.
 - And important mathematical theorems: 4 Color Theorem, Kepler’s Conjecture, etc.
- However, still requires skilled user and long time frame for non-trival theorems.
Machine Learning

- Machine learning now a mature and successful field.
- Small amount of work on data-mining proofs and search spaces for common patterns.
- Can we extract generic proof strategies from manual proofs?
 - Then apply these strategies to automate proof of POs from the same family?
- Can we use this to further reduce the skill level and increase the productivity of PO proof?
Is this Enough?

- Where are we now with the automation of PO proof?
- Can we do better with AI techniques?
- What percentage of PO proofs can we aspire to automate?
- Can we help with modelling process?
- What are the implications for the industrial uptake of formal methods?
- What other barriers to this uptake remain?