

The Use of Rippling to Automate Event-B Invariant Preservation Proofs

Yuhui Lin, Alan Bundy& Gudmund Grov

School of Informatics University of Edinburgh

www.inf.ed.ac.uk

Background

- Proof automation is a bottleneck for industrial use of formal method
 - large number of proofs (e.g 43K/28K)
 - requires user expertise
 - High-proportion (e.g. 59%) are invariant preservation, which follows a particular pattern $f(x) \vdash f(g(x))$
- Here, we show how an automatic proof technique called rippling is applicable to these POs
- Outline a novel approach combining rippling with scheme-based theory exploration to automate required lemma discovery

Event-B INV proofs

Consider the invariant & the event any x, y T = dom(R; f) when $x \in T$ then $R := R \cup \{(x \mapsto y)\}$

$$\begin{array}{ll} x \mapsto y & a \ pair \\ \mathrm{dom}(r) & \{x. \exists y. (x \mapsto y) \in r\} \\ p \ ; q & \{(x \mapsto y). \exists z. (x \mapsto z) \in p \land (z \mapsto y) \in q\} \end{array}$$

www.inf.ed.ac.uk

Event-B INV proofs

Proof :

$$x \in T$$

$$T = \operatorname{dom}(R\,;f)$$

$$\vdash$$

$$T = \operatorname{dom}((R \cup \{(x \mapsto y)\}); f)$$

$$(A\cup B); C=A; C\cup B; C$$

$$T = \operatorname{dom}((R \ ; f) \cup (\{(x \mapsto y)\} \ ; f)) \quad \boxed{\operatorname{dom}(A \cup B) = \operatorname{dom}(A) \cup \operatorname{dom}(B)}$$

$$T = \mathit{dom}(R;f) \cup \mathit{dom}(\{(x \mapsto y)\};f) \text{ Apply Assumption}$$

 $T = T \cup \operatorname{dom}(\{(x \mapsto y)\}; f)$

Rippling

- *Rippling is* developed for step cases of inductive proofs
 - guides searching by moving the goal towards the induction hypothesis (e.g. invariants in Event-B)
 - <u>skeleton</u> (embedding of the invariant) is intact
 - meta-level annotations called <u>wave fronts</u> only moves in certain desirable directions

$$f(x) \vdash f(g(x)) \xrightarrow{f(g(x)) = h(f(x))} f(x) \vdash h(f(x))$$

- Allows rewrite rules in both directions with termination guaranteed (e.g. associative and distributive rules)
- Have strong expectation of the following proofs steps

Event-B invariant proofs by rippling $x \in T$ $T = \operatorname{dom}(R; f)$ \vdash $T = \operatorname{dom}((R \cup \{(x \mapsto y)\}) ; f) \quad (A \cup B); C = A; C \cup B; C$ $T = \operatorname{dom}([(R; f) \cup (\{(x \mapsto y)\}; f)]) | \operatorname{dom}(A \cup B) = \operatorname{dom}(A) \cup \operatorname{dom}(B)$ $T = \operatorname{dom}(R; f) \cup \operatorname{dom}(\{(x \mapsto y)\}; f)$ Apply Assumption $T = T \cup \operatorname{dom}(\{(x \mapsto y)\}; f)$

Lemma discovery in rippling

- Proof can be blocked by lacks of lemmas
- Suppose our proof is blocked at:

$$T = \operatorname{dom}(\begin{array}{c} R \cup S \\ \end{array}; f)$$

• We can then follow a 4 step process which discovers the missing lemma

$$(A\cup B); C=A; C\cup B; C$$

Lemma discovery steps

1. Generate the left hand side: pick terms of blocked goals which are expected to change in the next rewriting step, e.g.

2. Conjecture right hand side: do it with strong expectation and patterns of scheme (e.g. distributive pattern)

$$?F_1((R;f),(?F_2 S f))$$

Where *?Fn* is a 2nd order meta-variables

- since skeleton must be preserved
- wave-front must move outwards.,

www.inf.ed.ac.uk

Lemma discovery steps

3. Instantiate scheme: then feed the scheme, i.e.

 $R \cup S$; $f = ?F_1((R; f), (?F_2 S f))$, together with a set

ot terms for instantiation to IsaScheme which

- is a tool which discovers conjectures
- with counter-examples checks
- with proof attempts
- 4. Prove conjecture: one of the "sensible" instantiations is $(R \cup S)$; $f = (R; f) \cup (S; f)$. But in more complex cases the process recurses or the user must provide a proof

Evaluation & Further work

Num of POs	9
Rodin only or only Isabelle tactics	0
Rippling + Isabelle tactics	1
Rippling + IsaScheme + Isabelle tactics (R + I + I)	2
R + I + I with some interaction still required	6

• Our further works are:

- dynamic scheme generation
- proper set of terms for meta-variables to instantiate
- conditional lemmas- generic
- piecewise fertilisation