An Introduction to the Logic of Partial Functions

Matthew Lovert

Newcastle University

May 21, 2010
Outline

1. Partial Functions

2. Approaches
 - Changing the Notion of Equality
 - McCarthy’s Conditional Operators
 - The Logic of Partial Functions
Partial functions and operators arise frequently:
 - Division
 - Recursive function definitions
 - ...

Classical logic does not handle undefined terms:
 - Terms must be denoting
The subp Function

\[\text{subp} : \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z} \]

\[\text{subp}(i, j) \triangleq \text{if } i = j \text{ then } 0 \text{ else } \text{subp}(i, j + 1) + 1 \]

Property 1

\[\forall i, j \in \mathbb{Z} \cdot i \geq j \Rightarrow \text{subp}(i, j) = i - j \]

<table>
<thead>
<tr>
<th>(\Rightarrow)</th>
<th>true</th>
<th>false</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>
How do you handle undefined terms?

John Harrison:

Four main approaches to handling undefined terms:
- Give a value for input outside of the domain
- Arbitrary value
- Type error
- Logic of partial terms

We will now consider three approaches in more detail.
Changing the Notion of Equality

- Weak (strict) equality as we have seen is undefined if either operand is undefined.
- Alternative: Provide non-strict versions of equality which will denote a Boolean value even with undefined terms as operands.

Weak equality

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>✏️</th>
<th>⊥️</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
<td>✏️</td>
<td>⊥️</td>
</tr>
<tr>
<td>1</td>
<td>false</td>
<td>true</td>
<td>✏️</td>
<td>⊥️</td>
</tr>
<tr>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
</tr>
<tr>
<td>⊥️</td>
<td>⊥️</td>
<td>⊥️</td>
<td>✏️</td>
<td>⊥️</td>
</tr>
</tbody>
</table>

Existential equality

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>✏️</th>
<th>⊥️</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>true</td>
<td>false</td>
<td>✏️</td>
<td>false</td>
</tr>
<tr>
<td>1</td>
<td>false</td>
<td>true</td>
<td>✏️</td>
<td>false</td>
</tr>
<tr>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
<td>✏️</td>
</tr>
<tr>
<td>⊥️</td>
<td>false</td>
<td>false</td>
<td>✏️</td>
<td>false</td>
</tr>
</tbody>
</table>
Changing the Notion of Equality Continued...

Property 1

\[\forall i, j \in \mathbb{Z} \cdot i \geq j \Rightarrow \text{subp}(i, j) = \exists i - j \]

- The non-strict equalities are not computable.
- Not just required for equality.
- Need to be aware of more than one notion of the operators in proofs:
 - Strict (computable) operators in function definitions
 - Non-strict operators to handle undefined terms
McCarthy’s Conditional Operators

Interpret the propositional operators as if they are defined by conditional expressions:

- $p \text{ cor } q \mid \text{ if } p \text{ then } true \text{ else } q$
- $p \text{ cimp } q \mid \text{ if } p \text{ then } q \text{ else } true$
- ...

Loss of commutativity (cand and cor), and contrapositive of cimp.

Inevitable variable

Alternative: Use alongside the standard logical operators:

- Distribution is now complicated
McCarthy’s Conditional Operators Continued...

- \(p \, \texttt{cimp} \, q \mid \text{if } p \text{ then } q \text{ else } \text{true} \)

Property 1

\[\forall i, j \in \mathbb{Z} \cdot i \geq j \, \texttt{cimp} \, \texttt{subp}(i, j) = i - j \]

- \(p \, \texttt{cor} \, q \mid \text{if } p \text{ then } \text{true} \text{ else } q \)

Property 2

\[\forall i, j \in \mathbb{Z} \cdot \texttt{subp}(i, j) = i - j \, \texttt{cor} \, \texttt{subp}(j, i) = j - i \]
The Logic of Partial Functions

- Vienna Development Method (VDM)
- A first-order predicate logic, which admits to undefined logical terms.
- Three-valued logic: \(\text{true} \), \(\text{false} \), and \(\text{undefined} \) (\(\bot \)).
- The truth tables are the strongest extension of their classical FOPC interpretations.

<table>
<thead>
<tr>
<th>(\lor)</th>
<th>(\text{true})</th>
<th>(\bot_B)</th>
<th>(\text{false})</th>
<th>(\Rightarrow)</th>
<th>(\text{true})</th>
<th>(\bot_B)</th>
<th>(\text{false})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{true})</td>
<td>(\bot_B)</td>
<td>(\text{false})</td>
</tr>
<tr>
<td>(\bot_B)</td>
<td>(\text{true})</td>
<td>(\bot_B)</td>
<td>(\bot_B)</td>
<td>(\bot_B)</td>
<td>(\bot_B)</td>
<td>(\text{false})</td>
<td>(\bot_B)</td>
</tr>
<tr>
<td>(\text{false})</td>
<td>(\text{true})</td>
<td>(\bot_B)</td>
<td>(\text{false})</td>
<td>(\text{false})</td>
<td>(\text{true})</td>
<td>(\text{true})</td>
<td>(\text{true})</td>
</tr>
</tbody>
</table>

- Parallel evaluation of the operands.
- Return a result as soon as enough information is available.
The Logic of Partial Functions Continued...

- No law of the excluded middle ($e \lor \neg e$):
 - $\text{subp}(0, 5) = -5 \lor \neg (\text{subp}(0, 5) = -5)$
- Definedness operator (δ):
 - $\delta(e) = e \lor \neg e$

Property 1

$$\forall i, j \in \mathbb{Z} \cdot i \geq j \Rightarrow \text{subp}(i, j) = i - j$$

Property 2

$$\forall i, j \in \mathbb{Z} \cdot \text{subp}(i, j) = i - j \lor \text{subp}(j, i) = j - i$$

- Mechanisation
J. H. Cheng and C. B. Jones

On the usability of logics which handle partial functions.

C. B. Jones.

Reasoning about partial functions in the formal development of programs.

Thank you.
Any Questions?